HPSS And OSSEC

I’d like to go over some of the tools that we mention on the blog. The first one I’d like to take a look at is OSSEC. You may have heard of us talking about it before, we mentioned it a few days ago. That was in relation to HoneyPoints and using OSSEC as another layer of your “defense in depth” strategy. I’ll explain what it does, and how it can help you.

First of all, what is OSSEC? OSSEC is an acronym for “Open Source Host-based Intrusion Detection System”. From the name you can see it’s a Host-based Intrusion Detection System (HIDS). As a HIDS it has the capability to do log analysis, integrity checking, Windows registry monitoring (and event log), rootkit detection, real-time alerting and active response against malicious hosts. It can be run locally, or as a centralized system with agents running on hosts.

So how does OSSEC relate to HoneyPoint? Well they both watch different things, and complement each other. While HoneyPoints are psuedo services and capture traffic from them, OSSEC watches real services for probes and compromises. It does this largely by a system of log analysis. I won’t go into it deeply, but the log analysis rules are very configurable, chainable, and fairly easy to write for anyone that knows regex and has a familiarity of basic scripting language.

With OSSEC’s active monitoring, it’s possible for the host to dynamically write firewall rules to block that host. Similar to HoneyPoints Plugin interface, with which you could also use to write a plugin to do that. You could even use OSSEC to watch your HoneyPoint Console syslogs and integrate HoneyPoint Console triggers with its own active response rules, to centralize blocking of hosts between HPSS and OSSEC.

As you can see, OSSEC can work quite nicely with HoneyPoint Security Server as part of a “defense in depth” strategy. There’s no single tool to “rule them all”, so to speak, so it’s important to watch from multiple perspectives! If you want to check out OSSEC, you can visit www.ossec.net.

Port Knocking and SPA – Thoughts

A colleague of mine pointed me to an article on Port Knocking, more specifically, Single Packet Authorization. I wasn’t too familiar with either but once I started reading, some thoughts came to mind. Does this look far to cumbersome and “pain in the butt” to implement for such a small gain to anyone else? This is just another method of implementing the doomed “security by obscurity”.
First off, Port Knocking “is a method of externally opening ports on a firewall by generating a connection attempt on a set of prespecified closed ports.” [1] Single Packet Authorization is similar, but requires only one encrypted packet. While this may impress some people with it’s technical savvy, this solution should be thoroughly evaluated before implementing. As far as enterprise usability goes – limited at best. Talking amongst ourselves here we did think of one implementation that would actually be useful. That is to prevent your ISP from knowing you’re hosting a service without having to create extensive black or white lists. You could host an ftp server for example without the port ever showing as open to an overly intrusive ISP. Of course we do not condone the breaking of any agreements with an ISP.
However, for enterprise environments Port Knocking and Single Packet Authorization are in my opinion no way a replacement for good security practices These include keeping the service up to date with any patches/updates provided by the vendor. Be aware of any newly developed or developing threats to the service you’re hosting. Implement proper ACLs at the firewall. Block all of Eastern Asia from accessing your SSH service if need be. Use VPN clients. This is critical, there’s no real reason to have remote access ports opened without protection. Use VPN clients. Just about every enterprise firewall comes with some sort of VPN option. Last but not least, do not forget the importance of a strong password policy. Brute force attacks really become a non issue with a complicated enough password.
In conclusion, PK and SPA sound good in practice, and implemented as part of a greater defense in depth solution could work; otherwise, stand alone PK and SPA in my opinion are less than ideal.

[1] http://en.wikipedia.org/wiki/Port_knocking

Save Time and Money with HoneyPoint Security Server

Well, the initial round of metrics are in. Organizations that have changed the way they think about information security can seriously benefit from changing the way they use NIDS (if they use them at all) and embracing the evolution in information security that HoneyPoint represents. Here are some pretty amazing metrics that have come back from our clients:

Strategy:

Customers who have continued to use NIDS have been able to cease daily monitoring of the alerts and relegate the NIDS to basically being a forensics tool when odd events occur.

Customers who combined our technology with a high signal, low noise log monitoring tool (such as OSSEC) have seen the largest return on investment and simplification.

Metrics:

Basically, when compared with a FREE NIDS (like Snort) using a registered rule set (with a 30 day delay), clients still achieved total cost of ownership savings of 50% by eliminating signature updates, IDS/IPS tuning and management human costs. The elimination of false positives and drastic reduction of events to process (from 5-18K per day) to less than 20 actual events per month, on average also aided these savings. The time savings they reported on average was about 90% per full time employee engaged in security monitoring!

Customers had nothing but praise for HoneyPoint’s strategy, performance and commitment to “deploy and forget” security.

That’s right! Let me recap that again: TCO reduction of 50% and time reduction of 90%! — Better security with less time and money…

The numbers increase significantly from there when compared with commercial (pay for play) software and managed services from a variety of companies. A couple of clients who were using commercial software managed services to try and manage their internal security were able to save between $30K and $82K in their first year with HoneyPoint and then up to $95,000 per year in subsequent years!

The last key point we have taken away from the quick summary of the interviews we have done so far is the amount of respect that the approach, strategy and implementation has earned from regulatory auditors. They have examined the product very thoroughly and done very deep reviews of the both the strategy and the capabilities. The outcome of these regulatory reviews, to date, have been excellent. Regulators have seemed to appreciate the forward thinking and the payoff that customers are receiving. Feedback has been excellent and continues to make us very proud of the work that we and our clients have done to bring HoneyPoint to market.

We will be putting together a more formal way to demonstrate these numbers in the near future. Our use cases and the attack results that we have been able to capture continue to come in and some simply amaze us! Stay tuned for more details as we finish analyzing the interviews and the use cases.

If your organization is interested in trying HoneyPoint and is willing to be a use case or public reference, we would like to talk to you. Deep discounts are available to firms who are willing to engage in this manner with us and we are certainly looking for more verticals outside of our existing markets. Give us a call if you would like to discuss it!

BTW – customers using HoneyPoint Security Server and HornetPoints exposed to the Internet have achieved some significant reduction is scans, probes and attacks by leveraging both “defense fuzzing” and our “one strike and you’re out black hole” approach. Let us know if you would like to hear more about how these strategies and tactics can reduce your Internet risk.

Yet More on SockStress…

OK gang, the story gets interesting again….

Check this out for some deeply technical details on some level of the basics of the attack. Fyodor has done an excellent write up of his guess.

You can also check out the response from the relevant researchers here.

I do like and understand Fyodor’s point that this smells like marketing. Perhaps we are supposed to believe that the vendors will have their responses coodinated and completed before the talk and disclosure? If not, then what is the point of waiting to disclose except to sell tickets to the conference?

This is a pretty HUGE can of worms that seems to have been opened by Kaminsky during the recent DNS issue. I guess it is just another nuance of this new age of attackers that we have entered. We will have to deal with more “huge holes” accompanied by media-frenzy, hype, researcher infighting and security vendor blather until the public and the press grow tired of it.

My point yesterday was that one of these days we will reach a point when some of these major vulnerabilities will not be able to be easily repaired or patched. When that becomes so, we may have to find a way to teach every day users how to plan for, and engineer for, acceptable failures. Until then, we should probably hone those skills and ideas, because it looks like where we are headed may just be fraught with scenarios where some levels of ongoing vulnerability and compromise may be a fact of life.

I believe strongly that we can engineer for failure. We can embrace data classification, appropriate controls and enclave computing in such a way that we can live with a fairly high level of comprise and still keep primary assets safe. I believe that because it seems to be the way we have dealt with other threats throughout history that we could not contain, eliminate or mitigate. We simply evolved our society and ourselves to the point where we could live with them as “accepted risks”. Some day, maybe even soon, we will be able to spend a lot less time worrying about whether or not users click on the “dancing gnome”, keep their workstations patched or if there is a vulnerability in some deep protocol…

The Protocol Vulnerability Game Continues…

First it was the quaking of the Earth under the weight of the DNS vulnerability that kept us awake at night. Experts predicted the demise of the Internet and cast doomsday shadows over the length of the web. Next came a laser focus on BGP and the potential for more damage to the global infrastructure. Following that came the financial crisis – which looks like it could kill the Internet from attrition when vendor, customer, banking and government dollars simply strangle it to death with a huge gasp!

Likely, we haven’t even seen the end of these other issues when a new evil raises it’s head. There has been a ton of attention on the emerging “sockstress” vulnerability. According to some sources this manipulation of TCP state tables will impact every device that can plug into a network and allow an attacker to cause denial of service outages with small amounts of bandwidth. If this is truly a protocol issue across implementations, as the researchers claim, then the effects could be huge for businesses and consumers alike.

What happens when vulnerabilities are discovered in things that can’t be patched? What happens when everyday devices that depend on networking become vulnerable to trivial exploits without mitigation? These are huge issues that impact everything from blenders to refrigerators to set top cable boxes, modems, routers and other critical systems.

Imagine the costs if your broadband ISP had to replace every modem or router in their client’s homes and businesses. What choice would they have if there were a serious vulnerability that couldn’t be fixed with a remote firmware upgrade? Even if the vulnerability could be minimized by some sort of network filtering, what else would those filters break?

It doesn’t take long to understand the potential gravity of attackers finding holes deep inside accepted and propagated protocols and applications.TCP is likely the widest used protocol on the planet. A serious hole in it, could impact risk in everything from power grid and nuclear control systems to the laundromat dryers that update a Twitter stream when they are free.

How will organizations that depend on huge industrial control systems handle these issues? What would the cost be to update/upgrade the robots that build cars at a factory to mitigate a serious hole? How many consumers would be able or willing to replace the network firewall or wireless router that they bought two years ago with new devices that were immune to a security issue?

Granted there should always be a risk versus reward equation in use, and the sky is definitely NOT falling today. But, that said, we know researchers and attackers are digging deeper and deeper into the core protocols and applications that our networks depend on. Given that fact, it seems only reasonable to assume that someday, we may have to face the idea of a hole being present in anything that plugs into a network – much of which does not have a mechanism to be patched, upgraded or protected beyond replacement. Beginning to consider this issue today just might give us some epiphanies or breakthroughs between now and the tomorrow that makes this problem real…