About Brent Huston

I am the CEO of MicroSolved, Inc. and a security evangelist. I have spent the last 20+ years working to make the Internet safer for everyone on a global scale. I believe the Internet has the capability to contribute to the next great leap for mankind, and I want to help make that happen!

Enabling ESP32 Secure Boot

What is Secure Boot?

ESP32 has a secure boot feature that allows you to configure the device to only accept signed firmware images from trusted sources. This can be used to prevent unauthorized modifications of your code and data on the ESP32, or to protect against malicious software (malware) attacks.

Why should it be used?

The ESP32 is an open-source hardware platform, which means anyone can modify its design. However, this also makes it vulnerable to malware attacks. If the attacker gains access to the device’s flash memory, they could replace the original firmware with their own version. In addition, if the attacker manages to gain root access, they could install any software on the device without user consent.

Secure boot prevents these types of attacks by requiring all firmware images to be digitally signed before being loaded into the device. Only those images that are signed by a trusted certificate authority will be accepted.

How does it work?

The ESP32 uses a Trusted Platform Module (TPM), which is a special-purpose chip designed for cryptographic operations. It provides a tamper-resistant environment where sensitive information such as passwords, keys, and certificates can be stored securely.

When the ESP32 boots up, it reads the TPM’s public key and checks whether the image file is signed using the private key associated with the public key. If so, the image is loaded into the device. Otherwise, the system displays an error message and refuses to load the image.

How do I enable it?

Secure Boot is enabled by default in the latest version of Espressif’s SDK for ESP32 development. But, on older versions of the SDK, you need to set the “secure_boot” option when initializing the board:

esp_init(0, 0x000002ff); // Initialize ESP32 module at address 0x00000200

esp_set_secure_mode(1); // Set secure boot mode

 

Why You Should Support CS2AI

What is Control Systems Cyber Security Association International (CS2AI.org)?

The mission of the Control Systems Cyber Security Association, Inc. (CS2AI) is to promote and advance cyber security education, research, and practice to protect critical infrastructure and ensure the safety and reliability of our nation’s control systems.

What does that mean? It means we are here to help you understand how to keep your control system safe from hackers, malware, and other threats. We want to ensure you know what to look for in a good cybersecurity program and how to find it.

We also want to ensure you have access to the best resources available to help you stay up-to-date on current trends and technologies.

Why does MSI support it?

Because we believe in its mission. We believe in making sure everyone has access to the information they need to make informed decisions about their own cybersecurity programs, especially when it comes to ICS.

We believe in helping people learn more about cybersecurity so they can take steps toward protecting themselves and their organizations.

We believe in supporting those who share our passion for improving the world through technology. CS2AI supports the core mission of MSI – making the online world a safer place for all of us.

How do I get involved?

It’s simple – click here to learn more about joining and the benefits of supporting the ongoing efforts to improve global cyber security.

Supply Chain Security Insights

Supply chain attacks are one of the most common cyber threats faced by organizations. They are costly and disruptive, often resulting in lost revenue and customer trust.

In this article, we’ll discuss five insights about supply chain attacks that all supply chain management and information security teams should be aware of.

#1. Supply Chains Can Be Vulnerable

Supply chains are complex networks of companies, suppliers, customers, and partners that provide goods and services to each other.

They include manufacturers, distributors, retailers, service providers, logistics providers, and others.

These entities may interact directly or indirectly via intermediaries such as banks, insurance companies, payment processors, freight forwarders, customs brokers, etc.

Supply chains are vulnerable to attack because they involve multiple parties and interactions between them. Each organization in the chain will have its own risk profile, security posture, and business model. This creates a complex environment for security risks. Attackers can target any part of the supply chain, and often focus on the weakest link, including manufacturing facilities, distribution centers, warehouses, transportation hubs, retail stores, etc.

Attackers can disrupt operations, steal intellectual property, damage reputation, and cause losses in revenue and profits.

#2. Supply Chain Security Must Include All Stakeholders

Supply chain security involves protecting against threats across the entire value stream. This means securing data, processes, systems, physical assets, personnel, and technology.

It also requires integrating security practices and technologies across the entire organization.

This includes ensuring that information sharing occurs among stakeholders, that employees understand their roles and responsibilities, and that policies and procedures are followed.

Security professionals should collaborate closely with executives, managers, and staff members to ensure that everyone understands the importance of security and has ownership over its implementation.

#3. Supply Chain Security Requires Ongoing Monitoring and Maintenance

Supply chain security requires ongoing monitoring and maintenance.

An effective approach is to continuously monitor the status of key indicators, assess risks, identify vulnerabilities, and implement countermeasures.

For example, an attacker could attempt to compromise sensitive data stored in databases, websites, mobile apps, and other locations.

To prevent these incidents, security teams should regularly review logs, audit reports, and other intelligence sources to detect suspicious activity.

They should also perform penetration tests, vulnerability scans, and other assessments to uncover potential weaknesses.

#4. Supply Chain Security Requires Collaboration Across Organizations

A single department cannot manage supply chain security within an organization.

Instead, it requires collaboration across departments and functional areas, including IT, finance, procurement, human resources, legal, marketing, sales, and others.

Each stakeholder must be responsible for maintaining security, understanding what constitutes acceptable behavior, and implementing appropriate controls.

Collaborating across organizational boundaries helps avoid silos of knowledge and expertise that can lead to gaps in security awareness and training.

#5. Supply Chain Security Is Critical to Organizational Success

Organizations that fail to protect their supply chains face significant financial penalties.

A recent study found that supply chain breaches cost United States businesses $6 trillion annually.

That’s equivalent to nearly 10% of the annual global GDP.

Supply chain attacks can result in lost revenues, damaged reputations, and increased costs.

Companies that invest in supply chain security can significantly improve operational efficiency, productivity, profitability, and brand image.

Bluetooth – Take a Look Around Your Life

What’s Interesting?

I wanted to take a moment to discuss Bluetooth (BT) scanning tools and how easy it is to find a plethora of BT devices around you at any moment. I’ve been watching some of the objects that have come up lately, which are pretty interesting.

Give it a shot for yourself, and remember to be respectful of the devices and their owners you find. Yes, there are often attack surfaces around to tamper with. Yes, some of the devices make it easy to track their owners (especially wearables). Don’t do those things, but do take a look around and be aware of just what all BT devices are in your home and business. The results might shock you.

What do you need to look around?

Here are two easy tools to help:

1) On your mobile phone, grab an app called nRF Connect (available for iOS and Android in their respective stores and on your laptop). It makes it trivial to see all of the named and unnamed devices near you, at the mall, in a crowd, etc.

2) Another option for your mobile devices, and in some cases, your laptop, is LightBlue. This is a simple to learn and use inventory and debugging tool for BT developers. Very useful for exploring as well.

Give it a shot. Take a look around. Again, be respectful of what you find, but it opens the door to a lot of exciting stuff in our environments that are nearly invisible in many cases to our naked eyes.

How Do I Know If My Company Needs a Risk Management Policy?

Risk management policies protect companies against financial losses due to various risks. These risks include legal issues, employee misconduct, environmental hazards, etc.

A company may implement a risk management policy to minimize these risks. However, several questions should be asked before implementing such a policy.

What Are the Risks That Could Lead to Financial Losses?

Many types of risks can lead to financial losses. Some examples include:

• Legal issues

• Employee misconduct

• Environmental hazards

• Product liability

• Cybersecurity threats

• Data breaches

• Other

It is important to understand what type of risk your company faces. For example, if your company sells products online, you will face cyber security risks.

Are There Any Existing Policies?

Before deciding whether or not to adopt a risk management policy, it is important to determine whether any existing policies cover the risks your company faces.

For example, if your company has an insurance policy, then you may not need to implement a separate risk management policy.

However, if your company does not have an insurance policy, then it is necessary to consider implementing a risk management policy.

Is Implementing a New Policy Worth It?

Once you know what type of risks your company faces, it is time to decide whether or not to implement a risk management plan.

Some companies feel that they do not need a risk management plan because their current policies already address their risks. However, this decision should be made carefully.

If your company does not have a formal risk management policy, then it is possible that some of the risks your company faces could go unaddressed. This means that the risks could become more significant problems down the line.

In addition, if your company decides to implement a risk management program, it is crucial to ensure that the program covers all the risks your company faces, including those currently unaddressed.

Do Your Employees Understand What Is Being Done?

When implementing a risk management plan, it is vital to ensure employees understand what is being done.

This includes explaining why the risk management plan was implemented, how the plan works, and what steps must be taken to comply.

The goal here is to ensure that employees understand your company’s risks and how the risk management plan helps mitigate them.

Will the Plan Be Cost-Effective?

Finally, it is essential to evaluate whether or not the risk management plan will be cost-effective.

Cost-effectiveness refers to the amount of money saved compared to the costs incurred.

For example, suppose your company spends $1 million per year to insure its assets. In addition, suppose that the risk management plan saves $500,000 per year. Then, the risk management plan would be considered cost-effective if it saves $500,000 annually.

In this case, the risk management plan is cost-effective because it saves $500,00 annually.

However, if the risk management plan only saves $100,000 per year, then the plan is not cost-effective.

In Conclusion

As discussed above, there are many reasons to implement a risk management strategy.

These strategies can help your company avoid potential financial losses caused by certain risks.

In addition, implementing a risk management plan can make your company more efficient and productive.

 

How to Rotate Your SSH Keys

SSH keys are used to secure access to and authenticate authorized users to remote servers. They are stored locally on the client machine and are encrypted using public-key cryptography. These keys are used to encrypt communications between the client and server and provide secure remote access.

When you log into a remote machine, you must provide a valid private key to decrypt the traffic. As long as the private key remains secret, only you can access the server. However, if someone obtains your private key, they can impersonate you on the network.

SSH key rotation helps prevent this type of unauthorized access. It reduces the risk that someone has access to your private key, and helps prevent malicious users from being able to impersonate you on your network.

Most security policies and best practices call for rotating your key files on a periodic basis, ranging from yearly to quarterly, depending on the sensitivity of the data on the system. Such policies go a long way to ensuring the security of authentication credentials and the authentication process for sensitive machines.

There are two ways to rotate your keys: manually, and automatically.

Manually

To manually perform key rotation, you need to generate a new pair of keys. Each time you do this, you create a new key pair. You then upload the public key file to the server you wish to connect to. Once uploaded, the server uses the public key to verify that you are who you say you are.

Automatically

An alternative approach is to use automatic key rotation. With automatic rotation, you don’t need to generate a new key pair each time you change your password. Instead, you simply update the permissions on your existing key file.

The following steps show how to configure automatic rotation.

1. Generate a new keypair

2. Upload the public key to the remote server

3. Configure the remote server to use the new keypair

4. Update the permissions on the old keypair file

5. Delete the old keypair

6. Logout from the remote server

More Information

On Linux systems, use the “man” command to learn more about the following:

    • ssh-keygen command
    • ssh-public-key command
    • upload-ssh-public-key command

The examples should provide options for command parameters and sample command output for your operating system.

For more information about the SSH protocol, you can review the Wikipedia article here.

 

Four Uses for the Raspberry Pi in Small Business Security

With Raspberry Pi systems now available fully decked out for under $100, there are many uses that small business security teams can find for these versatile devices. Here are four of our favorites for using them in security roles.

1. Honeypot for Detecting Attackers on Your Network

Our HoneyPoint™ Agent runs on the Pi. It allows you to monitor for potential network compromises and attempts to breach your network by offering a fake system for attackers to target. Since the system has no real use, any interaction with it is suspicious at best, and malicious at worst. This allows for an easy-to-manage detection tool for your business.

2. Nessus Scanning Engine for Vulnerability Management

Nessus now supports running on the Pi 4 with 8 Gigs of RAM. Nessus is a very popular and powerful vulnerability scanner. With it, you can scan your network for vulnerabilities and find out what software needs updating.

3. Run Pi-Hole for Content Filtering

Pi-Hole is one of the best open-source security tools on the Internet. It provides enterprise-quality content filtering for free. Drop this on your network and implement it following the online instructions, and you’ve got affordable protection against malicious advertising, bad content, and many types of malware that inject via the browser.

4. Build a Cheap VPN Server

PiVPN makes setting a VPN for your small business needs incredibly simple. You can use this feature to access systems while you’re away or just to stay safer on public wireless networks. Most folks can deploy this in under an hour, and it can save you an immense amount of risk.

Using a Pi for some other risk management or security purpose? We’d love to hear about it. Drop me a line on Twitter (@lbhuston) and let me know what you’re up to. We’ll feature any ground breaking ideas in future posts.

 

A Cynefin Risk Management Use Case

Lately, I have been working on using the Cynefin framework to help a client with supply chain risk management. I’m not going to dig into the specifics here, but I wanted to share a quick workflow that we used during this process that has been very useful for us.

Risk Matrix

First, we built a risk matrix for supply chain risk. Basically, there are a number of these available via the various search engines. We took some of the most common ones and tore them down to commonalities, then built them into our matrix. We turned this into a simple spreadsheet.

Heat Mapping

Next, once we had our risk matrix, we did an exercise where we heat mapped the various risks, scoring them high/medium/low subjectively. This gave us an excellent tool to monitor our situation and communicate it with our stakeholders.

Applying Cynefin

Next, we mapped all of the high risks into the cynefin framework by researching the present state of each, whether best practices were available and relevant, being developed, or still in the experimental stage. This gave us a good idea of which problems we could simply focus on using known techniques and skills against, which ones we needed to take existing decent practices and optimize them, and which problems we needed to experiment with solutions for.

Sharing and Feedback

Overall, the exercise took around an hour to complete once we compiled the basic templates and completed the risk matrix research. For those of you facing complex risk management problems, this workflow might assist. Let me know on social media (@lbhuston) if it provides any help or if you have suggestions and feedback. Thanks for reading!

3 Common Challenges Implementing Multi-Factor Authentication

Multi-factor authentication is becoming increasingly popular among businesses and consumers alike.

However, many organizations struggle to implement the technology successfully.

Here are three challenges organizations face when implementing multi-factor authentication.

1. Lack of Awareness

Many organizations don’t understand what multi-factor authentication is or why they should use it.

They think it’s too complicated, expensive, or unnecessary.

This misconception leads to a lack of awareness about the security risks posed by weak passwords and phishing attacks.

2. Security Concerns

Some organizations believe that multi-factor authentication adds complexity and cost to their IT infrastructure.

But, in reality, multi-factor authentication doesn’t add much overhead.

Instead, it provides additional layers of protection against cyberattacks.

3. Complexity

Organizations sometimes find it difficult to integrate multi-factor authentication into their existing systems.

For example, they might have to replace old software or change user interfaces.

Some Potential Solution Ideas

If you’re struggling to implement multi-factor authentication, here are some tips to help you overcome these challenges.

1. Educate Employees About Multi-Factor Authentication

Educating employees about multi-factor authentication helps them understand its importance.

Make sure employees know that using multi-factor authentication reduces the likelihood of fraud and improves overall security.

2. Use Technology That Works For You

Multi-factor authentication tools are becoming more popular by the day. Many low-cost, or even free, solutions exist from vendors like Microsoft, DUOand others.

Look for solutions that have easy integration with your existing business infrastructure and systems.

3. Work With A Partner

A partner who has experience implementing multi-factor authentication can be helpful.

An experienced partner can provide guidance and support throughout the implementation process.

4. Make Sure The Solution Is Right For You

Before choosing a solution, make sure it meets your organization’s needs.

As always, if we can be of assistance, drop us a line to info@microsolved.com. We’d be happy to help!

3 Essential Raspberry Pi Hardening Steps

Raspberry Pi hardening is essential for securing your device against attacks.

Here are three essential Raspberry Pi hardening steps:

1. Disable SSH If You Don’t Need It

Disable SSH access to your Raspberry Pi using the following command:

sudo raspi-config

Choose “Advanced Options” and then choose “No ssh”.

2. Change Your Password

Change your password to something secure. You can use the following command:

passwd

3. Update Raspbian

Update your Raspberry Pi’s operating system to the latest version available. This ensures that your device is up to date with security patches and bug fixes.

To update your Raspberry Pi, follow these instructions:

sudo apt-get update

sudo apt-get upgrade

In summary, hardening your device by following these steps will help you protect your Pi from attacks. Making these three basic steps a part of every Pi install you do will go a long way to giving you a safer, more dependable, and more private experience.